PHYSICAL REVIEW E

VOLUME 52, NUMBER 6

DECEMBER 1995

Noise-induced instability in self-consistent Monte Carlo calculations

D. S. Lemons
Department of Physics, Bethel College, North Newton, Kansas 67117

J. Lackman
Department of Physics, Amherst College, Amherst, Massachusetts 01002

M. E. Jones and D. Winske
Applied Theoretical Physics Division, Los Alamos National Laboratory, Los Alamos, New Mexico 97544
(Received 29 September 1994; revised manuscript received 10 April 1995)

We identify, analyze, and propose remedies for a numerical instability responsible for the growth or
decay of sums that should be conserved in Monte Carlo simulations of stochastically interacting parti-
cles. “Noisy” sums with fluctuations proportional to 1/V/ ', where n is the number of particles in the
simulation, provide feedback that drives the instability. Numerical illustrations of an energy loss or
“cooling” instability in an Ornstein-Uhlenbeck process support our analysis.
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I. INTRODUCTION

We consider the computational task of pushing parti-
cles in a stochastically interacting system for which
system-wide quantities like total energy or momentum
are conserved. In general the parameters defining the
stochastic process depend self-consistently upon the in-
stantaneous state of the system: for instance, the col-
lision rate might depend upon the system temperature.
This dependence can open a numerical feedback channel,
which in turn drives an unphysical growth or decay of
quantities that should be conserved. The burden of our
paper is: (1) to show how such a “heating” or “cooling”
instability arises in typical Monte Carlo realizations of a
stochastic process described by a Langevin equation, (2)
to analytically describe and numerically illustrate the
evolution of such an instability, (3) to propose ways of el-
iminating the instability in Monte Carlo calculations, and
(4) to place this work in the context of physical models of
plasmas and gases.

A Monte Carlo simulation calculates the time evolu-
tion of n computational particles. These n particles con-
stitute a necessarily finite sample of a larger population
and each particle has certain associated random variables
(e.g., particle velocity). In consequence, sums of a func-
tion of individual particle random variables (e.g., total en-
ergy or momentum) must themselves be random variables
even when meant to represent conserved quantities. Typ-
ically, fluctuations in these n-particle sums of random
variables are proportional to 1/V'n and are what could
be called “finite sample noise”. The presence of finite
sample noise in Monte Carlo calculations is not
surprising—what is surprising is that finite sample noise
can drive a numerical instability which causes quantities
that should be conserved not only to fluctuate but also to
grow or decay. In this paper we investigate the finite
sample, noise induced, instability of self-consistent Monte
Carlo simulations.
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Our initial motivation was to understand the instability
as it occurred in particle-in-cell (PIC) simulations of a
plasma to which a stochastic collision operator modeling
an Ornstein-Uhlenbeck process had been added [1]. PIC
simulations solve field equations on a mesh and advance
particle velocities with fields interpolated from nearest
mesh points [2]. In this way the number of calculations
necessary to advance a system of n particles per time step
scales as n rather than as n2. Because PIC simulations
determine the fields only on the mesh, they cannot ac-
count for the brief and intense interactions between parti-
cles (i.e., collisions) arising when particles approach each
other more closely than the distance between adjacent
mesh points. For this reason PIC codes have been most
frequently used to model systems (e.g., plasmas, neutrons,
or galaxies) tenuous enough to be effectively “collision-
less™.

However, efforts have also been made to incorporate
the effect of binary collisions into PIC computer codes
with Monte Carlo techniques. As computational time
has become more available such “PIC-MCC” (where
MCC stands for Monte Carlo calculations) simulations
have become more convenient. In Ref. [1], for instance,
particles were made to respond not only to electromag-
netic fields but also to a stochastic “collision field” de-
scribed by a Langevin equation but likewise determined
only on the mesh. Other PIC-MCC techniques have been
used as well [2].

We have organized our paper as follows. Section II in-
troduces the fundamental set of Langevin equations and
Sec. III derives conditions under which they conserve a
system-wide population average. Section IV recapitulates
this material for finite sample averages. Section V ana-
lyzes the instability while Sec. VI numerically illustrates
the energy decay or “cooling” version of the instability in
a Monte Carlo simulation of an Ornstein-Uhlenbeck pro-
cess. Section VII shows how the instability can be avoid-
ed. Finally, Sec. VIII summarizes and discusses applica-
tions.
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II. FUNDAMENTAL DYNAMICAL EQUATION

Because the Langevin equation is widely applicable
(i.e., to all continuous Markov processes), we believe the
mathematics of the Langevin equation underlies many, if
not all, PIC-MCC simulation codes. Furthermore, be-
cause the Langevin equation is mathematically well un-
derstood, we believe it is an appropriate tool for code
design and analysis.

The generalized Langevin equation is one of two
equivalent formulations of a continuous Markov (i.e.,
memoryless) stochastic process. Here we use it, i.e.,

dv= A (v,t)dt +V'D(v,t)dt N(0,1) , (1)

to describe the time evolution of particle velocity v in one
dimension. Here N(0,1) stands for a normal random
variate with population mean O and variance 1. The drift
A(v,t) and diffusion D (v,?) coefficients incorporate
desired physics including, in our case, conservation of
system kinetic energy and linear momentum. The second
term on the right hand side of Eq. (1) makes it a stochas-
tic differential equation with v a random variable rather
than an ordinary differential equation with v a ‘“‘sure”
variable. When D (v,2)=0 for all v and ¢, Eq. (1) de-
scribes a ‘“Liouville” (i.e., deterministic) process; when
A (v,t)=0 and D (v,t)=const, (1) describes a “Wiener”
process [3].

Completely equivalent to the generalized Langevin
equation (1) is the one-dimensional Fokker-Planck equa-
tion

9 P(v,t)=~—a [A4 (v,0)P(v,2)]
at
+ia—[D(v,t

T )P(v,1)], 2)

where P (v,t) is the time-dependent probability density of
v. We will have occasion to use the density P(v,t) and
the Fokker-Planck equation (2). However, numerical al-
gorithms for Monte Carlo codes which follow discrete
particle behavior are more readily based upon the
Langevin equation (1).

Here and throughout the paper we adopt the so-called
Ito interpretation [4] of our fundamental stochastic pro-
cess (1). The integration of stochastic differential equa-
tions like (1) cannot, unfortunately, be defined as a
Reiman-Steltjes integral. Instead there are a whole set of
possible definitions, usually called “interpretations”, of
an otherwise ill-defined mnemonic form (1). The particu-
lar features of the application at hand must be allowed to
dictate which definition, i.e., which interpretation, is
used. We justify our use of the Ito interpretation in Sec.
V. In the meantime we note that the Ito interpretation
does not differ from the Stratonovich and other possible
interpretations for homogeneous diffusion processes with
D (v,t)=D(1).

We also suppress or ignore spatial dependence so that
the system of which we write is local (e.g., pertaining to
one cell of a PIC code), or, if extended, then homogene-
ous. We, furthermore, limit our considerations to sys-
tems composed of a single species of mass m particles.
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Then the total linear momentum and Kkinetic energy of
such a system are proportional to m{v ) and m (v?)2, re-
spectively. Here the bracket notation indicates a system
population average

(FoN=[7 dvPo,nf (), (3)

where f(v) is an arbitrary function and the probability
density P (v,t) is assumed normalized.

III. CONSERVED QUANTITIES

In many applications, total linear momentum and
kinetic energy of a species are preserved by intraspecies
interactions, i.e., the species mean {v) and variance
(v2) — (v )2 of P(v,t) are constants in the process defined
by (1) or, equivalently, (2). These are special cases of the
conservation of { f(v)) where f(v) is an arbitrary func-
tion of v. Conservation of { f(v)) is denoted as

d{f(v))=0. (4)

As we shall see, conservation law (4) is consistent with
process (1) only when the drift A4 (v,?) and diffusion
D (v,t) coefficients are related in a certain way.

The time evolution of f(v), i.e., an expression for
df (v), given the general process (1) is determined by

df (v)=f (v +dv)—f(v)

zf’(v)varI%(E)—(dv)z ,

=f'Adt+ f'V'Ddt N + f2 (5)
where the prime denotes a derivative with respect to ar-
gument, i.e., f'=df (v)/dv, N=N(0,1), and function ar-
guments have been and will be suppressed where obvious.
Performing the bracket operation on each side of the
above we find that

(f"D)

d{f)= 5

(frAy+~>—=ldr, (6)

since {f'VDN)={f'V'D ){N)=0 because the normal
variate N is statistically independent of the product
f'V'D. Therefore, if (f) is to be conserved, the func-
tions A4 (v,t) and D (v,t) must be chosen so that

(f"D)

(f'd)+-+1—+ 7

For example, a Wiener process [ 4 =0, D =const] con-
serves momentum (f =v) but not kinetic energy (f =v?).
The simplest process which conserves both is a time-
independent Ornstein-Uhlenbeck process with

A, t)=A(w)=—y —pB) (8)
and
D(v,t)=D =82, 9)

where ¥, 3, and & are independent of v and ¢. Thus an
Ornstein-Uhlenbeck process conserves momentum when



32 NOISE-INDUCED INSTABILITY IN SELF-CONSISTENT . ..

B=(v), (10)
and kinetic energy when
82=2y((v?)—(v)?). (11)

IV. MONTE CARLO SIMULATIONS

A Monte Carlo simulation determines the time evolu-
tion of v for a finite number of particles (i =1,...,n)
with a time-differenced version of (1):

dv;= A (v;,0)dt +v/D (v;,H)N;(0,1) . (12)

These n particle equations are a sample which must
suffice to represent the entire population. How then, in
this version of the fundamental equation, are the drift A4
and diffusion D coefficients chosen so that one or more
system quantities are conserved? How, indeed, are these
conserved quantities defined?

We replace the population average { f(v)) defined by
Eq. (3) with a quantity proportional to the finite sample
average denoted by f and defined by

F=— 3 1) (13)

i=1

The time evolution of f is then straightforwardly derived
by summing each term in Eq. (5) over the sample and di-
viding by n. In this way we find

df = ﬁ+f2’—q dt+fVDNVar . (14)

Note that Eq. (14) does not quite take the same form as
its population equivalent Eq. (6); (14) contains a third
term on the right hand side which is a function of the
normal variates N,(0,1), i=1,...,n. If we require the
drift A and diffusion D coefficients to satisfy the sample
average equivalent of Eq. (7), i.e.,

ﬁ+%—2=0, (15)

the sample average f is not exactly conserved but evolves
according to the stochastic differential equation

df=fVDNVdr . (16)

Equation (16) is cast into more revealing form via the
“normal sum theorem”

3 a;N;(0,DH=N [o, Za?]

so that

2 .
df=N o,an Vide . (17)

Thus, as one might expect, the nonvanishing term on the
right hand side of (16) or (17) is a finite-sample noise term
which vanishes in the limit of indefinitely large sample,
i.e.,

lim f"VDN=0. (18)

n— oo
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Nonvanishing finite-sample__noise is never be-
nign. Even when the quantity f'NV'D is independent of
f and constant in time, the resulting Wiener process [i.e.,
Eq. (17)] causes the supposedly conserved quantity f to
drift Brownian-motion style within an ever-growing
range of magnitude proportional to V'¢. Furthermore, as
we shall see, when f'NV'D is an increasing (decreasing)
function of f, f decreases (increases) systematically. In
particular, when f'NV'D is linearly proportional to f
and the application admits of the Ito interpretation, f de-
creases exponentially.

V. NOISE-INDUCED INSTABILITY

Under certain circumstances a sample average f with a
conserved population average { f ) can be driven unstable
by finite-sample noise even though, according to (17), the
increment df is at each time step normally distributed
around zero.

An important process in which this instability occurs is
the Ornstein-Uhlenbeck process defined by Egs. (1) and
(8)—(11) designed so that the total momentum and kinetic
energy is conserved apart from finite sample fluctuations.
Then

A, t)=—y(v—0) (19)
and
D (v,t)=2y(7*—7?) . (20)
Specifically,
dv,=—y(v,—0)dt +[2y(5>—v)dt ]'/*N, , 1)
fori=1,...,n[5].
Momentum [f(v)=mv] and kinetic energy

[f(v)=mv?/2] as well as mean [f(v)=v] and variance
{(f(w)=[n/(n—1)](v —7)?} functions satisfy supposed
conservation laws (15) for this process. However, accord-
ing to Eq. (17), the time evolution equations for the mean
velocity m where here

m=v, (22)

and the sample variance s? where

s2=—L_(p7—p2) (23)

for this process are determined by

172
dm = |2 {n—Ddt ("_2”‘”] SN (24)
n
and
8ydin—1? |
ds?= |SLEERL | N (25)
n
respectively.

Equation (24) is coupled to (25), and (25) itself has an
inhomogeneous diffusion constant depending upon s2.
Equation (25) can be integrated directly but the result de-
pends upon the interpretation of stochastic integration
adopted. Given the Ito interpretation and that y is time
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independent, we can invoke the Ito interpretation to ar-
rive at the solution
172
Nl ,

(26)

2yt(n —1)?

n3

$°=s5 exp 3

12
12 [_47/(n LD PN
n

where s =s%¢ =0). s? is a so-called log-normal random

variable because its logarithm is distributed normally,

i.e.,

2
! ==
Q27

This Ito solution of (25), i.e., (26) and (27), is well docu-
mented [6].

The other common interpretation of the stochastic
differential equation Eq. (25) (i.e., the Stratonovich) re-
sults in a log-normal solution of form (27) with zero
mean. Since the Ito interpretation leads instead to a very
different result, Eq. (27) with nonvanishing mean, our use
of the Ito calculus must be justified. The difference be-
tween the Ito and Stratonovich interpretations is most
succinctly explained in terms of how one would solve an
equation like (25) with finite time differencing and sum-
mation. A scheme of explicit time differencing corre-
sponds to an Ito interpretation while centered time
differencing corresponds to a Stratonovich interpretation.
Explicit time differencing of (25) means determining the
increment in s2 from the old value of s2. With time cen-
tered differencing the increment is determined from the
value of s? midway into the time increment. Other
differencing schemes are, of course, possible and lead to
other interpretations. That the final result depends upon
the differencing scheme chosen even in the continuum
limit is what distinguishes the integration of stochastic
differential equations from that of ordinary differential
equations.

Our simulations do not solve Eq. (25) directly; rather
Eq. (25) is an interpretation of the combined effect of nu-
merically solving many single particle Langevin equa-
tions (33) below. However, in numerically integrating
each Langevin equation we see no alternative but to as-
sume (and thus do assume) that the system variance is a
constant over the time step. Then after each time step
the new variance is calculated. For this reason we believe
our simulation results are most closely modeled by an ex-
plicit differencing, i.e., an Ito interpretation of (25), and
the solution (26) or (27) is the relevant one.

Equations (26) and (27) describe a temporal decay in
the median of the sample variance s? [or, equivalently,
temporal decay in the mean of the sample In(s2)]. Since
s? is proportional to the system kinetic energy and thus
to its temperature, s? decay is equivalent to system cool-
ing. Furthermore, although we cannot analytically solve
Eq. (24), general features of its solution are now clear.
The sample mean m drifts Brownian-motion fashion and
then “freezes” or becomes increasingly fixed as the sys-
tem cools.

8yt(n—1)°

n3

n3

12
4y(n —1) ‘t,
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The presence of the normal variate in the argument of
the exponential of (26) insures that the distribution of s
is very skew with a long, large-variance, high-
temperature tail. However, the negative term propor-
tional to time also suggests that typical values of s decay
in time. These interpretations are only apparently con-
tradictory because they refer to different features of Egs.
(26) and (27). It can be shown (see again Refs. [6]) that
the expected or mean variance does not change, i.e.,

(s2)=s3 . (28)

Evidently, most realizations of the sample cool, modulo
fluctuations, while a few become very hot. We call this
“noise-induced cooling”.

Noise-induced cooling in an Ornstein-Uhlenbeck pro-
cess is, in the above sense, exponential in time. The ex-
ponential decay decrement (y ~!n3)/[4(n —1)?] is much
larger than the time scale for relaxation to equilibrium
y~! when n>>2. Therefore, in practice (i.e., when
n >>2), exponential noise-induced cooling is significant
only for systems which spend much time in thermal equi-
librium.

Equations (25)-(27) represent a special case of a larger
class of processes exhibiting growth or decay of a sample
variable f whose population value is conserved. For each
member of the class the increment df is a normally distri-
buted random variable with vanishing mean and variance
equal to (f'2DV'dt )/n as in Eq. (17). Thus the incre-
ment df is positive and negative with equal frequency.
However, when the size of the increment, i.e.,
(f"?DV'dt )/n, increases with f, the random variable
will decay in time; when the increment decreases with f,
the random variable f will increase in time. Decay (e.g.,
cooling) occurs because the system gets “stuck” in a re-
gion of phase space where f is small much as a Brownian
particle gets stuck in the high viscosity region of an inho-
mogeneous fluid. Likewise f grows whenever and be-
cause f gets “frozen” (i.e., fluctuates weakly), in regions
of phase space where f is large.

Such dynamics might be more familiar when expressed
in terms of a common gambling tactic. Accordingly the
gambler decreases his wager by a preselected fraction
after every win and similarly increases the wager after
every loss. In this way the gambler’s wealth can become
“frozen” at a high value even though the probability of a
loss might be somewhat higher than the probability of a
win. The opposite, and possibly more natural, behavior
of decreasing the size of the wager after a loss and in-
creasing it after a win leads inevitably to financial ruin.

Heating is also natural in an Ornstein-Uhlenbeck pro-
cess for which ¥ is a function of the instantaneous state
of the system through the system energy or variance.
Suppose, for instance,

p

[
N}

Y= (29)

|

W
onN

Then Eq. (25) would have the form

ds?«<Vs4T2dr N (0,1) . (30)
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We are not aware of exact solutions to Eq. (30) except
when p =0, i.e., when y =const. However, it is straight-
forward to show that limiting (i.e., t— o0 ) stationary
solutions to the Fokker-Planck equation (2) correspond-
ing to the Langevin equation (30) have the form

P(s%t—o0)ocsg 472 (31)

Therefore, when p > —2 the system cools; when p < —2 it
heats. The marginal case (p = —2) leads to a Brownian
drift of s2.

VI. NUMERICAL METHOD
We time difference the set of Eq. (21)

dv;=—y(v; —v)dt +[2y(v2—v2)dt ]'/N, , (32)

for i=1,...,n by assuming ¥, U and (v¥—7?) are con-
stants independent of the variables v; and time ¢ over a

0 100 200 300 400

FIG. 1. Time evolution of the velocity mean m [Fig. 1(a)] and
variance s? [Fig. 1(b)] for two runs of different sample sizes
(n =35 and 350). The process is Ornstein-Uhlenbeck with con-
stant y, i.e.,, the process is determined by Eq. (33) with
vyAt =0.001. The mean velocity m fluctuates randomly then
“freezes” as the variance ‘“cools”. Increasing the sample size
from n =35 to 350 weakens but does not eliminate the instabili-

ty.
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time step Az. The nonlinear nature of the square root
function make methods based on other assumptions very
inconvenient if not impossible to execute. Furthermore,
these assumptions make sense because 7 and (v>—v?) are
typically weak functions (<v;/n) of v;. Also, the e-
folding time of the instability is, according to Eq. (27),
(¥ "'n3)/[4(n —1)*], which is, typically (i.e., for n >>2),
long compared to the e-folding time for changes in v;,
thatis y 1.

Separating variables and integrating (32) we find [7] the
difference equations

v, (t +A)=v,(t)e “TA+T(t)(1—e TR
+5V'1—e 272N, (33)

fori=1,...,n. These are used in all subsequent calcula-
tions. Equation (33) is also an alternative starting point
for derivations of Eqgs. (24) and (25).

In computations particle velocities were chosen initial-
ly from a normalized Maxwellian distribution (@i.e., a
Gaussian probability density) with unit temperature (i.e.,
initial variance sg=1). Each time step the n particle ve-
locities were advanced with the n equations (33) and
quantities m and s? were updated and stored. Calcula-
tions were done on the Amherst College Open VMS
VAX Version 6.0 computer operating system running
VAX PASCAL.

Figures 1(a) and 1(b) show typical time histories of the
mean [Fig. 1(a)] and variance [Fig. 1(b)] when y =1.0.
The time step size is small enough, Az =0.001, to elimi-
nate finite time step effects. Note that in both runs the
trend in s? [Figs. 1(b)] is down although occasionally s?2
fluctuates upward as well. As expected the mean m [Fig.
1(a)] fluctuates then “freezes”, i.e., becomes fixed, as s?
decays. Increasing the number of particles in the simula-
tion from n =35 to n =350 weakens the noise-induced

0 100 200 300 400

¥t

FIG. 2. Time evolution of the velocity variance s* on a semi-
log plot for two stochastically distinct realizations of an
Ornstein-Uhlenbeck process with constant ¥ (dark lines). The
number of particles » =100 and yAt=0.001. Light lines
represent the theoretical mean of In (s?/s3) and the envelope
formed by the mean =+ one standard deviation of In (s2/s3) as
predicted by Eq. (27).
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numerical instability but does not eliminate it. These ob-
servations are consistent with Egs. (24) and (25) and solu-
tion (26).

Figure 2 more positively identifies the instability as
that analyzed in Sec. V. Here are time histories of the
variance s? for two, typical, process-wise identical (i.e., in
Eq. 33 y=1 and Az =0.001) but stochastically distinct
realizations on a semilog plot. Individual histories of
In (s?/s3) fall within a standard deviation of the
mean of the log-normal solution (27). Light lines
show the theoretical mean and standard deviation
envelope, —4yt[(n —1)2/n%] and —4yt[(n —1)*/n?]
+V'8yt[(n —1)2/n3], respectively, of the log-normal
solution (27). Recall that the mean of the log-normal
solution (27) corresponds to the median of exponential
solution (26) and that the mean or expected value of the
exponential solution (26) is constant in time.

VII. REMEDIES

We’ve noted (see Fig. 1) that as the sample size in-
creases the instability weakens. In particular, when y is
time independent, the time dependence of
s?<exp{4y[(n —1)2/n®]t}. Therefore, while this insta-
bility can be rendered inconsequential either by increas-
ing the sample size # or limiting the run time T so that

%T <1, (34)

this remedy is not always practicable. In PIC simula-
tions, for instance, finite sample noise within a cell may
be large because the number of particles per cell n often
averages less than 10.

Recall that we could not solve the instability Egs. (17)
or (30) for any but an Ornstein-Uhlenbeck process with
time independent y. Therefore, when y «s? with p0
and for processes other than Ornstein-Uhlenbeck, the in-
stability growth may be even more robust than for
Ornstein-Uhlenbeck with p =0. Certainly, since p =0
leads to exponential damping and p = —2 is the marginal
Brownian drift case, we expect that p >0 leads to faster
than exponential damping. Therefore, it is imprudent to
depend in all cases on the criterion (34).

For these reasons, methods for defeating the noise-
induced instability in Monte Carlo calculations are re-
quired which do not depend upon either sample size n or
run time T or upon understanding the detailed dynamics
of the instability. We propose two such methods both of
which completely eliminate the instability by eliminating
all fluctuations in samples f of conserved quantities
(f(v)).

The simplest method is, after each velocity advance by
the appropriate Langevin equation [e.g., via Eq. (33)], to
linearly transform the particle velocities so that their
mean and variance recover the desired values. Suppose,
for instance, the velocities have been advanced to the
values {v/,i=1,...,n} and that this set has a mean m’
and variance s?. Suppose also, as is likely, m’ and s de-
viate from the previous (desired) values m and s2. The re-
normalization
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Vy—V; ,
where

v=m +,—m"WVs2/s? (35)
for i =1,...,n returns the mean and variance to m and

s2. Since the transformation is linear in the velocities, it

also maps an initially Maxwellian velocity distribution
into the same Maxwellian. - We have implemented trans-
formation (35) and found that, indeed, it allows the sys-
tem to evolve stochastically while preserving constant ve-
locity mean and variance.

Another option is to advance the velocities with
“quasinormal” {Y;(0,1), i =1,...,n} rather than nor-
mal {N;(0,1),i=1,...,n} variates. The purpose of the
quasinormal variates Y; is to zero the term on the right
hand side of Eq. (16) that drives the noise-induced insta-
bility. Thus the Y; are a function of the N; chosen so
that

f'YVD =0, (36)

for each function f(v) corresponding to a conserved
quantity. When f(v) corresponds to the sample
mean, f(v)=v, and the sample variance, f(v)=[n/
(n—1)](v —7)%, and when the process is Ornstein-
Uhlenbeck with D (v,1)=2y(v>—0?), the conditions (36)
become

Y=0, (37
and
Covg{v,Y}=0, (38)

respectively, where Covg{v,Y} denotes the sample co-
variance of v and Y,

Covg{v,Y}=0Y—-D Y . 39)
We also require that the Y; have unit variance,

Y?=1. (40)
The three-parameter linear transformation

Y,=a +bN;+cv,; , 41)

which satisfies these three requirements (37), (38), and
(40) is N;— Y;, where

1/2
n—I1 [

n

(N;—N)s*—(v;—m)Covg{Nv}]
sV s2Covg {N?} —CovZ{Nv} .
(42)

Y, =

1

Sample Monte Carlo simulations of the Ornstein-
Uhlenbeck process (33) with quasinormal variates Y;,
defined by transformation (42), replacing the normal vari-
ates N; successfully conserve mean m and variance s
without distorting an initially Maxwellian velocity distri-
bution.

Replacing normal variates with quasinormal ones is,
possibly, more conceptually direct than renormalizing ve-
locities. The former method does not allow the sample
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mean and variance to fluctuate at all while the latter
corrects for fluctuations once they have occurred. How-
ever, the simplicity of the velocity shift, Eq. (35), is an im-
portant advantage.

These remedies employ transformations which satisfy
either two (velocity shift) or three (normal variate shift)
constraints. Therefore when applied to very small sam-
ples, i.e., n =2 or n <3, respectively, their effect is merely
to return velocities or normal variates to their values be-
fore the stochastic advance.

VIII. CONCLUSION

The initial motivation for this work was to understand
the unphysical cooling of plasma particles in a PIC simu-
lation that modeled intraspecies particle collisions with a
vy =const, Ornstein-Uhlenbeck process. When the effect
of temperature T'[ «s2] on the plasma particle collision
cross section [8] is incorporated into this model so that

y={nvo )< T732 (43)
the plasma should heat instead. Likewise, a simulation of
a collisional gas of hard spheres will have

y=(nvo)=T"?, (44)

Therefore, the hard sphere gas will cool. We suspect this
finite sample, noise induced, instability inhabits other
Monte Carlo simulations as well. All the instability re-
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quires is: (1) a Monte Carlo calculation of a (multiparti-
cle) set of Langevin equations or their equivalent, (2)
sums which should be conserved, and (3) a diffusion
coefficient D that is a function of the “conserved” sum f.

Ornstein-Uhlenbeck processes, because of their simpli-
city, are widely used to model nonequilibrium processes.
We analyzed in detail and numerically illustrated the in-
stability of an Ornstein-Uhlenbeck process. In our
analysis, the increment in the size of the supposed con-
served kinetic energy is directly proportional to the
current size of the kinetic energy and so, according to a
straightforward but possibly counter-intuitive deduction
via the Ito calculus, the system cools.

Fortunately, there are simple remedies which do not
depend upon increasing the sample size or limiting the
run time of the simulation. The simplest is to linearly
shift the particle random-variables so as to return the
“conserved” quantities back to their desired values.
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